Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 651: 785-793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572614

RESUMO

Lithium titanate is a promising anode material for lithium-ion batteries due to its high-rate capability and long-cycle duration. However, gas swelling during electrochemical reactions has hindered its industrial application. Here, we synthesize self-assembled (400)-orientation lithium titanate (SA-LTONF) with ultrafine nanoparticles using a feasible thermal method. The SA-LTONF with an organic carbon coating exhibited superior electrochemical performance. To understand such high-rate capability, we perform density functional theory (DFT) calculations which elucidate the orientation-dependent electrochemical mechanism of hydrogen evolution and the atomically dynamic mechanism of lithium-ion migration in Li4Ti5O12 and Li7Ti5O12. Our findings provide a unique insight into the gas generation and ultrafast lithium-ion transportation in lithium titanate and offer guidance for nanoarchitecture construction and materials design of lithium titanate for commercial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...